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ABSTRACT 
Neural Network based sound source localization has rapidly evolved over the last few years. However, there is a 

continuous rise in demand for more accurate, reliable, and computationally efficient methods that can be 

effectively implemented in harsh acoustic conditions. This article aims to collectively examine the existing source 

localization techniques implemented with neural networks. It provides discussions on the architectures, learning 

strategy, features extracted, number of sources, dataset, and the performance of these methods. A table 

summarizing the literature review is supplied at the end to enable a quick search of approaches with a specific 

set of goal features. 
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1. INTRODUCTION  

Sound source localization (SSL) is the task of approximating the position of one or more sound sources 

with respect to random reference positions. Typically, this reference point is the location of a recording 

source array. Despite the fact that researchers have made great strides in the field of source localization 

[1–3] it still remains an emerging field due to its rising demand in modern SSL-based applications such 

as human-machine interaction, hearing aids,  automated surveillance, automated camera steering in 

videoconferencing, teleconferencing, etc. In these applications, SSL can be used for source separation 

[4], speech enhancement [5], speech recognition [6], control robot movement, source tracking, and 

many more. These applications demand efficient and robust localization techniques with low 

computational burden in complex environments[7].  

The existing SSL techniques can be classified based on any one of these four parameters: design 

principle of techniques, sensor array used, localization in 3D space, and the number of active sources. 

Based upon their design principle, these SSL techniques can be broadly categorized into two groups 

namely conventional techniques and Neural Network based techniques. The conventional methods are 

basically based on either of these:  Beamforming[8], Time Difference of Arrival [9] or Steered Response 

Power [10, 11]. However, in the last few years, neural network-based techniques have seen surge in 

their applications. Hence, this work aims to present the survey of the Neural Network based SSL 

techniques. 

Several authors have presented the application of Neural Networks (NN) such as Artificial Neural 

Networks (ANN)[12], Convolutional Neural Networks (CNN)[13], Recurrent Neural Networks 

(RNN)[[14]], Long Short Term Memory (LSTM) and their combinations for source localization. These 

localization task can be formulated as regression  or classification problem [15] .In the case of the 
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regression problem, it aims to predict the continuous values whereas the discrete values solutions are 

found in case of classification. The second categorization of SSL methods is based on number of sensors 

used and their placement.  They can be classified into monoaural, binaural, tri-aural, tetra-aural, and 

multi-aural microphone arrays based on the number of microphones used. These sensors can be placed 

in several geometries such as linear, circular, non-coplanar, tetrahedral, and so on to achieve optimum 

performance[16]. Among these techniques, binaural can rarely be replaced exclusively in the fields 

associated with human hearing such as hearing aids, humanoid robots, and so on. These techniques rely 

on the data input from solely two microphones for localization which makes them efficient in terms of 

hardware required. They usually extract one or more of auditory cues namely Interaural Level 

Difference (ILD), Interaural Time Difference (ITD), and Interaural Phase Difference (IPD) of the 

received signals as use it as input to NN techniques[17–19]. 

The third classification of SSL techniques can be made on the number of space dimensions in which 

source is localized. In 1D localization, it is typically the azimuth angle of the source which is estimated 

from the given signals [20]. Azimuth and elevation are the predicted dimensions in 2D [21]whereas in 

3D, the polar or Cartesian coordinates of the source are estimated [22]. Several SSL-based applications 

need direction of arrival (DOA) of the source which requires location estimation in only 1D or 2D only 

such as videoconferencing, speech enhancement etc. The other applications may need the cartesian 

coordinates of the source such as surveillance, robot movement control etc. The fourth essential SSL 

parameter is the number of inputs in a recorded mixing signal. In several work, the number of active 

sources are  not known prior to implementation of SSL methodology, in that case source is detected 

before localization [23, 24]. 

This paper presents a survey of Neural Network based SSL techniques. It aims to organize the literature 

work on SSL and present it is a convenient form for the new researchers in this field. 

This script is further organized as follows: The section 2 describes the literature-recommended neural 

network architectures for solving the SSL challenge. It includes the networks' layering scheme, with a 

progressive network and complicated strategy. The first subsection is based on learning techniques 

which are used for datasets.  The second section is based on Neural Network techniques for SSL. It is 

followed by DNN, CNN, RNN’s and their hybrid models in consecutive subsections. Finally, the study 

of existing techniques are presented in table form.  

This paper presents a systematic survey of the SSL literature using different architectures. We 

categorize and discuss the various approaches of the employed architectures and addressed number of 

sources for localization system. In other words, we provide a taxonomy of the recently released ML-

based SSL literature. At the end of the paper, we present a summary of this review in the form of 

detailed table including all features used with model and evaluated results. 

2. ML BASED SSL TECHNIQUES 

2.1 Implementation 

The source localization is designed in two stages to detect the direction of an oncoming sound wave. 

The first step is to generate datasets, and the second is to train with network for localization estimation. 

This article discusses many strategies for sound source localization in which key feature is Cue 

extraction (ILD,IPD,ITD, and GCC-PHAT etc. In contrast to humans, which use binaural sound 

localization techniques, robotic ears first used numerous microphones and different array configurations 

for SSL, employing both conventional localization algorithms which contains number of hidden layers 

and provide a calculative approach for localization angle , Accuracy and Error. 
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Fig 1.   Structural implementation for localization. 

2.2 Learning Techniques 

In general, selecting a training methodology for a neural network to carry out a specific task depends 

on the kind and quantity of data that is available where learning techniques are used. They are useful 

when complicated functions are used to describe the relationship between the signals from the 

microphone array and the characteristics retrieved from those signals. In the neural network-based SSL 

literature, most of the systems rely on supervised, semi-supervised, or weakly supervised learning.  

Supervised (S) learning has become a popular technique to learn representations from massive 

unlabelled datasets. The term "self-supervision" refers to techniques that develop representations of the 

data using "proxy learning tasks," where the learning process is influenced by patterns in the data. Here, 

the main objective is to develop mappings between input examples and low-dimensional representations 

[25]. The drawback of supervised training is that it uses a lot of labelled training data, whereas only a 

small number of real-world datasets can be gathered for SSL. These datasets are insufficient for reliable 

Deep Learning (DL) model training. Semi-supervised (SS) learning is when some of the learning is 

done under supervision and some of it is done unsupervised. The network is often trained using labelled 

data before being improved (or fine-tuned) via unsupervised learning, which is, without labels [26]. 

Work in Refs. [27, 28] employed a weakly supervised (WS) training method.  The authors improved a 

pre-trained neural network in this study by changing the cost function, which is the number of known 

sources to account for weak labels. There are numerous approaches available in addition to the above 

succinctly mentioned learning methods for determining the DOA estimations. 

2.2.1. Neural-based SSL techniques  

Deep Neural Network (DNN): Deep Neural Networks are strong models that can automatically 

recognize and take advantage of the relationship between the location of sources and the availability of 

information. A sufficient number of representative training examples are used to train the models. Since 

the feature extractor module can be related to traditional processing, data-driven DL approaches have the 

potential to replace traditional methods based on a signal procedure and model entirely, or at least in 

part. This makes SSL-based applications more attractive[29]. Deep learning models effectively adapt to 

the previously presented training data without explicitly imposing any such assumptions. Deep neural 

networks and spectral source models are combined in Ma et al.’s[30] model of binaural localization. The 

model conducts azimuth estimation by combining the target source and noise with DNN, where ITD, 

CCF, and ILD feature vectors are used. The model has a less than 5% error rate and is resistant to noise 

and reverberation settings. Using DNN, He et al.[31] carried out multiple speaker detection and 

localization, which uses likelihood-based coding and the Generalized Cross Correlation Phase Transform 

(GCC-PHAT) as input features. With 90% accuracy, the model calculated 3D sound-based localization. 

Binaural localization based on DNN and preferred propagation clustering in incompatible HRTF settings 

is proposed by Wang et al. [32] to enhance the DNN model's capacity for generalization. It estimates 

azimuth with 63% accuracy. Using cues like ILD and CCF, work in Ref [33]suggests fusing CNN and 

DNN. The output layer was applied after the concatenation of the front-back classification performed by 

CNN and the azimuth estimation performed by DNN. With 83% accuracy, the model performed well in 

reverberant and noisy situations.  

Convolution Neural Network (CNN):  CNN is the most popular source localization and classification 

approach, often known as a convNet [34]. It is one of the key developments in the field of machine 
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leaning that helped to pave the way for the DNN renaissance. It consists of pairs of convolution and max 

pooling layers. The convolution layer applies a series of filters that operate on discrete local regions of 

the input where they are repeated over the entire input space. According to work in Ref. [25], utilizing a 

CNN increased overall Direction of Arrival (DoA) classification accuracy by two times when compared 

to a conventional method called Steered Response Power with Phase Transform (SRP-PHAT) in low 

signal-to-noise ratio settings. This work is further extended to localize multiple speakers in work [35] 

where the DOA estimate approach has a reasonably good degree of adaptability to unknown acoustic 

situations. This method is highly dependent on the time-varying source signal. However, the model is 

trained using phase component of the input signal's Short-Time Fourier Transform (STFT) which slowed 

down the training of the network. Li et al.[36] worked around this problem by combining CNN  with 

Long Short-Time Memory (LSTM) which further improved the localization accuracy by 80-90%. Semi-

supervised localization using deep generative modelling and Variational Autoencoders (VAE) is 

proposed by Bianco et al. [37]. Using labelled and unlabelled HRTF samples, VAE provides the relative 

transfer function phase that the DOA classifier compares against. In comparison to CNN, VAE-based 

localization is more accurate and uses SRP-PHAT systems. It conducts an azimuth estimation from -90 

to 90º with a 2.9 to 4.2% error rate. Based on a weekly supervised learning approach that can be modelled 

using a small number of labelled samples and a larger collection of unlabelled samples, Opochinsky et 

al. [38]performs binaural localization. It estimates azimuth from 0 to 180 degrees with an error of under 

10%. CNN network for binaural localization has been implemented in Ref. [39]based on ITD using 

Grouped Cross Correlation Function (GCCF) and Encoded Cross Correlation Function (ECCF). It 

developed two models for TDOA estimation: GCC net grouped and GCC net encoded, and trained them 

in three different environments: anechoic rooms, multi-conditional training, and realistic settings. It 

estimates azimuth between -80 and 80 with a 0.1% to 0.25% error rate.  

Convolutional Recurrent Neural Network (CRNN) - RNNs are neural networks made specifically for 

modelling temporal data sequences [14]. RNNs theoretically have the ability to simulate long-term 

temporal dependencies, but due to the large number of time steps required, the gradients disappear before 

they reach the first time steps during optimization. CNN has been combined with RNN which is often 

used to model sequential data such as source localization. In this, the last convolutional layers of a CNN 

are changed to create a CRNN, which is known as a modified CNN. In comparison to past architectures 

that only used CNN, work in [40]showed CRNN, which also uses a GRU (gate recurrent unit), performs 

better in terms of training time and parameter count. Convolutional Recurrent Neural Network based 

four-microphone array architecture is suggested by Grondin et al.[19] for azimuth and elevation 

localization. Using CRNN, work in ref. [22]suggested event localization model which does not rely on 

configuration of the array because it employs the phase and magnitude components of each channel 

separately. It can be applied to any type of microphone array design, is resistant to unidentified DOA, 

and is capable of detecting multiple DOA. 

Long Short Term Memory (LSTM): The LSTM was proposed to resolve the problem of vanishing 

gradients of RNN methods[41].The network contains three layers: a hidden layer with four LSTM 

blocks, a visible layer with one input and an output layer that predicts value. The recurrent hidden layer 

of the LSTM has unique components known as memory blocks. These memory blocks also comprise 

memory cells with self-connections that store the network's temporal state[42].The original architecture 

includes input gates and output gates for every memory block that regulate the flow of information. 

Ninad et al.[43] worked on ILD, and the Mel Frequency Cepstral Coefficients (MFCC) are used to train 

the LSTM-RNN network when the signal from both microphones is detected. The network next learns 

to determine the direction of the sound signal and does azimuth estimation by extracting distinguishing 

characteristics from the MFCC. In this work, testing accuracy for 10 and 450 precisions in azimuth has 

been found to be 82% and 95%, respectively.      
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Table 1. A summary of existing NN based technique 

Author Comparative study of different Architecture with Error, Accuracy and Localization angle. 

Architecture  Dataset Nos LT Output 

Types 

Features 

used 

ER AC  Localization 

angle (Az: 

Azimuth, El: 

Elevation) 

[44] NN  Roomsim 

using ISM, 

Recorded 

dataset 

1 S R  Frequency-

dependent 

ITD& ILD; 

cue filtering 

to reduce 

reverberation 

Sim:20º - 50º, 

Recorded50º-

60 º 

 - Az:(-45º: 

-45º) 

[37]  Deep 

Generative 

modeling with 

-VAE based 

on CNN 

 DTU and 

MIR 

dataset for 

IR &   Libri 

Speech 

corpus 

1 SS C RTF-Phase 

Sequence 

(MSE) 7.81º-

3.00º(DTU) 

And 12.9º-

3.11º(MIR) 

52-

80.5%(DTU) 

69.3-

84.4%(MIR) 

Az: (-90º:90º) 

[32] DNN  CIPIC, 

RIEC  for 

HRTF  

1 S R Clustering 

HRTF, ILD 

and CCF 

2.6º 60.43% 

(CIPIC), 

55%   

(RIEC) 

Az: (-80º:80º) 

[30] DNN –Full 

head 

movement 

Surrey 

BRIR & 

BRIR TU 

Berlin 

3 S C ILD and 

CCF 

0.25% 96% Az: (0:360º) 

[45] CAR-FAC 

cochlear 

system: 

Cascade of 

Asymmetric 

Resonators 

with Fast-

Acting 

Compression 

Deep- CNN 

Recorded 

dataset, 

austalk   

1 S R ITD, IPD   

and  

spectral cues 

  

  

RMSE 

=3.680º 

 - Az: (0-180º) 

[38]  DNN based 

on  stochastic 

combination 

of triplet-

ranking  loss  

for  the  

unlabeled  

samples  and  

physical  loss  

for  the anchor  

samples, 

 Simulated 

datasets 

using ISM 

1 WS R Relative 

Transfer 

Function 

(RTF) 

30º - 40º  -  Az: (0-180º) 

[39] CNN  CIPIC for 

HRTF and 

NOISEX-

92 

1 S R  CCF-

grouped & 

CCF-

encoded. 

TDOA error 

(0.143ms sim 

RT 

60=0.8ms) 

0.279ms for 

realistic env. 

GCC 

encoded 

performs 

better 

 - 

[46] Fusion of 

CNN (for 

front back 

classification) 

and DNN 

TIMID, 

AIR, 

NOISEX-

92 

1 S R ILD and 

CCF 

- 83.43% Az: (0-360º) 
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[47] TF-CNN with 

Multitask 

learning 

CIPIC -

HRTF 

database, 

TIMID 

1 S R HRTF, IPD 

and ILD 

-  85- 90%   Az;  

(-80º:80º)  

El:  

(-45º to 90º) 

[48] CRNN+SA DCASE 

2020 (FOA 

& MIC) 

1 S R Log-Mel 

magnitude 

spectrogram, 

IPD from 

acoustic 

intensity 

(FOA) 

vector and 

GCC-PHAT 

(MIC) 

 190 (FOA)& 

18.20 (MIC) 

 -  - 

[43] LSTM-RNN Real 

dataset at 

10 and 450 

1 S R Mel 

Frequency 

Cepstral 

Coefficients 

(MFCC) of 

ILD 

-  At 10: 82% 

& at 450: 

95% 

- 

[22] CRNN Synthetic 

dataset 

3 S R &C Phases and 

magnitudes 

of    

spectrograms 

- 91% Az:(90º:90º), 

El:  

(-60º:-60º) 

[49] CNN   Simulated 

with ISM, 

HINT, 

TIMID, 

recorded 

data with 

smartphone 

2 S C STFT (real + 

img) 

 <20% 83-89%  Az: (0:180º) 

[50] Auto encoder -

decoder with 

explicit 

transformation 

layer 

Synthetic 

and 

simulated 

3 SS C Real 

+imaginary 

spectrograms 

Rmse-0.11, 

F1 score is 

0.80 

-            -            

[51] CRNN+RA 

+multi-scale 

densely 

connection 

(MDC) 

TAU-

NIGENS, 

ANSIM, 

REAL, 

MANSIM, 

SSEA, 

MREAL 

1 S R Log-Mel 

spectrogram 

+sound 

intensity 

vector 

0.535±0.025º Fr.90.2,  

DE 14.8 

-            

[52] SELD-TCN TUT, 

ANSYN, 

MANSYN, 

REAL, and 

MREAL 

1 S R Phase 

+Magnitude 

spectrogram 

0.67 -            -            

For effective comparison of the performance of state-of-the art methods, these methods should have been 

tested on centralized environment and similar dataset However, as shown in the table, these methods 

have been tested on different dataset. Several Authors have taken different speech dataset, Noise dataset 

and impulse response datasets while others have recorded dataset. Due to lack of availability of sufficient 

labelled data for training, several authors have even preferred training the model with simulated data. 

This paper presents the comparison of these methods broadly in terms of architecture, features and their 

accuracy. 

Here, it is noted that the among the two output strategies namely classification and regression, the latter 

is the commonly preferred by researchers. This is mainly due the fact that SSL is mainly considered as a 
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regression problem. Further, we can see that most of the work is limited to azimuth angle localization 

and moreover only in the front of the microphones. A very few authors have considered the front-back 

ambiguity as a challenge. Author in work [46]has suggested front- back localization as a classification 

problem and then localized the source as a regression task while another has considered full head 

movement for 3600 localizations. From the table it may be depicted that, the existing work is limited to 

localizing the single source. However, in practical environment there are more than one source active at 

a time. However, in real world, there are more than one active source at a given time and thus open the 

doors for detection and localization of multiple active sources simultaneously in 3D. The table shows 

that most of the researchers have opted for supervised learning and hence these localization systems may 

fail to accurately localize when there are frequent changes in the environment. This leaves a scope for 

the unsupervised or semi-supervised learning approaches to take over the SSL field.  

The popularly used architecture are based on DNN and CNN so far which may be due the fact that they 

have ability to recognize all potential interactions between predictor variables and to implicitly detect 

complicated nonlinear relationships between dependent and independent variables with availability of 

different training. However, it is also noted that LSTM-RNN is the one of the growing architectures that 

has shown improvement in accuracy compared to other methods with less error rate.  The commonly 

used feature that are used for training the model are ILD, ITD and CCF. The authors have preferred the 

combination of two or more features to improve their performance.  

The estimate accuracy for the LSTM-RNN with MFCC of ILD is found to be 95% whereas for other 

architecture, it fluctuates 80-90%. The DNN architecture with full head movement has shown the highest 

accuracy of 96% while using ILD and CCF.    

3. CONCLUSION 

In this study, we have extensively reviewed the literature on SSL techniques based on neural network 

and localization approaches developed in the Robotics field during the last years. Various methodologies 

were presented, and their applicability to robotics was examined. The application of the high-resolution 

CNN approach to broadband signals necessitates specific consideration due to limited processing 

resources and the existence of noisy environment. LSTM based architecture have gained the popularity 

in the last few years. These models are preferably trained with combination of ITD, ILD and CCF. 

However, most of these techniques have been implemented on a single source in 1D localization. 

Moreover, most of these techniques are based on supervised learning that demands large, labelled data. 

Hence, there is a need to make these techniques semi-supervised and extent them for 3D localization. 

Accuracy and RMSE needs to be improved in scenarios when multiple sources are active at a time. All 

these upcoming developments will lead to lively debates among the Signal Processing, scientific 

communities of Acoustics Robotics, but also Psychoacoustics and Physiology. Then, we hope that this 

assessment of accessible approaches to the "low-level" stage of localizations will inspire new members 

to join the thriving field of Robot Audition. 
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