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ABSTRACT 

Deep Reinforcement Learning (DRL) is a promising field within Artificial Intelligence that combines deep 

learning, a subfield of Machine Learning, with Reinforcement Learning (RL) techniques. DRL allows deep neural 

networks to represent and comprehend the world, enabling agents to acquire proficiency in intricate tasks and 

make decisions in high-dimensional environments. In this paper, we explore different types of RL approaches, 

including Model-based, Value-based, and Policy-based methods and combinations of deep neural networks with 

RL techniques, allowing for effective representation learning from high-dimensional inputs. The paper discusses 

various deep-reinforcement learning algorithms and applications that are commonly used in robotics and other 

domains. The paper discussed the selection of a specific RL approach is influenced by factors like problem 

complexity, the presence of a suitable training environment, and the desired decision-making process. Finally, we 

conclude by discussing the future challenges and opportunities for deep reinforcement learning in autonomous 

robotics. 

KEYWORDS: Robotics, Artificial Intelligence, Reinforcement Learning, Mathematics, Deep Reinforcement 

Learning. 

1. INTRODUCTION 

Deep Reinforcement Learning (DRL) stands out as an incredibly captivating domain within the realm 

of Artificial Intelligence (AI), also the subset of artificial intelligence that combines deep learning which 

is a specialized area of machine learning that emphasizes the utilization of neural networks to make 

predictions from the input sample data in a supervised way and encode the representation of that data 

in the way to get insights from that data. And combines Reinforcement Learning, a type of learning 

where an agent or an Intelligent system interacts with the environment to learn through rewards and 

punishment. Rewards and Punishments in the Trial & Error phase of learning is a fundamental process 

through which reinforcement learning agents learn. Deep Reinforcement Learning (DRL) empowers 

deep neural networks to effectively understand and interpret the surrounding environment, enabling 

them to take meaningful actions through an autonomous agent. It also enables agents to learn complex 

tasks using neural networks and make decisions in environments with high dimensional input spaces 

[1][2][4]. In traditional Reinforcement Learning the agent at each step in the process first executes the 

action, and observes a new state, and the feedback an RL agent receives, consisting of rewards and 

penalties, plays a crucial role in its learning process. The significance of life for reinforcement learning 

agents is to maximize the accumulative reward via Policy, Value functions. Policy function: An agent 

operates based on a strategy called the Policy. It sees the world and makes a decision that’s a policy 

that decides how to act. Reinforcement learning aims to disclose an optimal policy that maximizes the 

predicted cumulative reward. Value function: It is a function that assigns a value to each individual 

state or combination of a state and action pair in an environment. It is essential for both policy evaluation 

and value improvement in reinforcement to maximize its long-term rewards. Policy functions define 

the agent's strategy for decision-making, while value functions assign values to states or state-action 
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pairs and are important for policy evaluation and improvement. Policy and value functions are 

fundamental components extensively examined in the subsequent paragraphs. These components play 

a significant role in reinforcement learning [3][4][5][11][13][14]. 

2. TYPES OF REINFORCEMENT LEARNING (RL) 

 

Figure 1.  Taxonomy of Reinforcement Learning 

2.1. Model Based 

Model-based reinforcement learning is an approach that involves understanding a representation 

of the environment without engaging in direct interaction. The agent initially learns an approximate 

dynamics model and frequently updates and re-plans it. This method can be utilized for planning, 

exploration, and policy optimization, enabling efficient learning without relying solely on real-world 

interactions.[2][3] The key steps involved in model-based RL are: i) Learning of Model: The agents 

gather data by interacting with the environment and this data is used to find insights and patterns. The 

model can be represented as a function that takes the current state and actions as input and expects the 

reward and next state. ii) Policy Optimization: The learned model can be used for planning and policy 

optimization. Planning involves using the model to simulate possible sequences of actions and states, 

allowing the agent to evaluate potential future trajectories and make informed decisions. Policy 

optimization techniques such as value iteration, and stochastic optimization can be applied using the 

learned model to improve the agent's policy. iii) Exploration: The learned model can also be used for 

exploration. By simulating possible actions and their outcomes using the model, the agent can explore 

and gather valuable information about the environment without directly interacting with it. This 

exploration based on the model can be more sample-efficient and safer than exploration in the real 

environment. iv) Model Refinement: As the agent interacts with the environment based on the learned 

model, it continues to collect new data and refines the model iteratively. This process allows the model 

to improve its accuracy over time, leading to more accurate planning and policy optimization 

[2][4][7][8].  
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Applications of model-based reinforcement learning include a) Robotics: Model based reinforcement 

learning has been applied to robotic control tasks, such as robot arm manipulation, locomotion, and 

object grasping. By learning and leveraging a model of the robot's dynamics, the agent can plan and 

optimize its control policy efficiently. b) Autonomous Systems: Model based RL can be used in 

autonomous systems, such as autonomous driving or unmanned aerial vehicles (UAVs). By acquiring 

knowledge about the environment, the agent can strategize and improve its decision-making, resulting 

in enhanced efficiency and safety. c) Game Playing: Model-based reinforcement learning has 

demonstrated successful applications in playing games, both in simulated environments and real-world 

situations. By acquiring a model of the game dynamics, agents can simulate and strategize future moves, 

empowering them to make well-informed decisions [3][4][9][10]. 

Model based reinforcement learning offers several advantages, including improved sample efficiency, 

safety, and the ability to perform offline planning. However, it also introduces the challenge of 

accurately learning and representing the environmental dynamics. Properly addressing this challenge is 

crucial for the success of model-based reinforcement learning approaches. 

2.2. Value based  

It is an approach in which an agent learns to assess the value of states or state-action pairs without 

explicitly learning a policy. The value function is used to evaluate the desirability or quality of different 

states or state-action pairs, guiding the agent's decision-making process. In value-based RL, the 

objective of the agent is to acquire knowledge about either the state value function (V-function) or the 

action-value function (Q-function). The state value function, referred to as V(s), provides an estimate 

of the anticipated total reward when starting from a given state, s. Conversely, the action-value function, 

denoted as Q (s, a), gives an approximation of the total expected reward when taking action "a" from 

state "s" and following a predetermined policy thereafter. Here are the key steps involved in value-

based reinforcement learning: i) Value Function Estimation: The agent iteratively updates its estimates 

of the value function based on observed rewards and the estimated values of future states or state-action 

pairs. This estimation can be done using techniques like temporal difference (TD) learning, which 

updates the value function based on the difference between predicted and actual rewards. ii) Policy 

Improvement: After estimating the value function, the agent can improve its policy by selecting actions 

that have higher estimated values according to the value function. This process is known as policy 

improvement and can be done by following a greedy policy concerning the value function estimates 

(i.e., selecting the action with the highest value). iii) Balancing Exploration and Exploitation: Striking 

the optimal balance between exploration and exploitation plays a crucial role in value-based 

reinforcement learning. Initially, the agent explores the environment to gather reward and transition 

information. As learning advances, it gradually transitions to exploiting the learned value function to 

make optimal decisions. iv) Value Iteration or Q-learning: Value-based methods often use iterative 

algorithms like value iteration or Q-learning to estimate and update the value function. These algorithms 

iteratively update the value estimates based on the observed rewards and transitions, converging toward 

the optimal value function [2][5][6]. 

Applications of value-based reinforcement learning include: a) Game Playing: Value-based methods, 

such as Q-learning, have demonstrated their effectiveness in game-playing scenarios, encompassing 

various types of games ranging from traditional board games to intricate ones like Go. These techniques 

enable the agent to assess the value associated with distinct game states or state-action combinations, 

allowing it to effectively strategize and make informed decisions. b) Control in Continuous Spaces: 

Value-based RL is also used in control problems involving continuous state and action spaces. 

Techniques like, Deep Q-Networks (DQN) which is a method that leverages the power of deep neural 

networks to effectively address complex and high-dimensional state spaces within the context of 

reinforcement learning, allowing for control in domains such as robotics or autonomous systems. c) 

Resource Management: Value-based RL has practical applications in resource management problems. 

In this context, the agent learns to assess the value of various actions or decisions, enabling efficient 

optimization of resource allocation, scheduling, and routing tasks [4]. 
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Value-based reinforcement learning has proven to be effective in various domains, particularly when 

the focus is on estimating the value function rather than directly learning a policy. It offers advantages 

such as simplicity, scalability, and the ability to handle high-dimensional state spaces. However, it may 

face challenges when dealing with continuous or complex action spaces and in cases where a policy 

needs to be explicitly learned. 

2.3. Policy based  

Author One approach involves training an agent to learn a policy, which acts as a guide for selecting 

actions based on given states, without the need for explicit estimation of value functions. In policy-

based reinforcement learning, the agent aims to directly learn a parameterized policy function π (a | s) 

that specifies the probability or deterministically selects an action in a given state, s. The policy can 

have two types: stochastic and deterministic. In the stochastic policy, it provides a probability 

distribution for each state, indicating the likelihood of taking different actions. On the other hand, the 

deterministic policy directly maps states to specific actions without any probability distribution 

involved. Here are the key steps involved in policy-based reinforcement learning: i) Policy 

Parameterization: The policy function is typically parameterized using a function approximator, such 

as a neural network, which takes the state as input and outputs the action probabilities or 

deterministically selects an action. ii) Policy Evaluation: The agent collects data by interacting with 

the environment using the current policy. The collected data is then used to estimate the performance 

of the policy through techniques such as Monte Carlo sampling or temporal difference learning. iii) 

Policy Optimization: The estimated performance of the policy is used to update the policy parameters 

to improve its performance. This is typically done using gradient-based optimization methods, such as 

stochastic gradient descent, policy gradients, or natural gradient methods. iv) Balancing Exploration 

and Exploitation: Balancing exploration and exploitation is crucial in policy-based reinforcement 

learning. The agent needs to explore the environment to discover better policies but also needs to exploit 

the learned policy to maximize rewards [2][5][6][13][15]. Exploration is often achieved by introducing 

randomness or by using exploration strategies like epsilon-greedy or adding noise to action selection. 

Applications of policy-based reinforcement learning include: a) Continuous Control: Policy-based 

methods are well-suited for continuous control problems where the action space is continuous, such as 

robotic manipulation, locomotion, or autonomous vehicle control. The policy can directly output 

continuous actions without the need for discretization. b) High-Dimensional State Spaces: Policy-

based methods, particularly those utilizing deep neural networks, can handle high-dimensional state 

spaces effectively. They have been successfully applied in tasks such as image-based control, natural 

language processing, and computer vision. c) Multi-Agent Systems: Policy-based RL is also applicable 

in multi-agent systems where multiple agents interact and learn policies simultaneously. It allows for 

learning cooperative or competitive behaviors in complex environments [4][5]. 

Policy-based reinforcement learning offers advantages such as the ability to handle continuous action 

spaces, flexibility in representing complex policies, and direct optimization of the policy objective. 

However, it may require more data and training time compared to value-based methods, and it can be 

sensitive to the choice of policy parameterization and optimization techniques. So, all these types are 

crucial to understanding Deep Reinforcement Learning accurately and using its algorithms in robotics. 

Now let’s deep dive into deep reinforcement Learning and its algorithms in robotics [5]. 

3. DEEP REINFORCEMENT LEARNING 

Deep reinforcement learning combines deep neural networks with reinforcement learning techniques, 

allowing for effective representation learning from high-dimensional inputs. Deep neural networks 

enable value function estimation, policy parameterization, and function approximation in both value-

based and policy-based methods. In deep reinforcement learning, Model based, Value based, and Policy 

based approaches can be combined or used interchangeably depending on the problem domain and the 

specific requirements. The choice of approach depends on factors such as the environment's nature, the 
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task's complexity, the available data, the desired trade-offs between exploration and exploitation, 

samples, and computational efficiency [6][13][14][16]. 

In the field of deep reinforcement learning, algorithms have shown promising results in tackling diverse 

robotics tasks by leveraging the remarkable capability of neural networks to create meaningful 

representations from exceptionally intricate and multidimensional sensory data. The raw data is 

collected from sensors present in the machine or robot's sensors can be cameras, radar, IMU, audio, 

GPS, etc. to learn agents for the real-world environment and to achieve high-performance control. 

4. DEEP REINFORCEMENT LEARNING ALGORITHMS IN ROBOTICS 

Deep reinforcement learning algorithms have shown promise in enabling robots to discover complex 

skills and acclimate to new environments. These algorithms use deep neural networks to approximate 

value and policy functions, but challenges such as exploration, generalization, and data collection must 

be addressed to make them more effective for real-world robotic applications. 

 

Figure 2. Deep Reinforcement Learning Model Cycle Learning 

4.1. Deep Q-Learning 

The algorithm described here combines aspects of deep learning and reinforcement learning to form a 

model-free approach. Its aim is to enable an agent to realize the best actions in a given scenario. The 

primary objective of reinforcement learning is to find an optimal policy that maximizes the agent's total 

rewards within the environment. This is achieved through the use of Q-learning, where Q-values 

represent the expected future rewards an agent would receive for taking specific actions in particular 

states. Through iterations, the Q-learning algorithm continually adjusts these Q-values based on the 

agent's experiences gained from interacting with the environment. Deep Q-learning introduces a deep 

neural network known as a Q-network. This network takes the current state of the environment as input 

and generates corresponding Q-values for each available action. During training, the Q-network is 

optimized to minimize the discrepancy between predicted Q-values and target Q-values, which are 

updated using the Q-learning update rule. Deep Q-learning has been successfully applied to a vast range 

of tasks, including playing video games, controlling robots, and optimizing resource allocation. Its 

ability to learn from raw sensory inputs makes it a powerful algorithm for solving complex and high-

dimensional problems [8][14][15]. 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) +  𝛼(𝑅𝑡+1 +  𝛾𝑚𝑎𝑥𝑎𝑄𝑡(𝑠𝑡+1, 𝑎𝑡) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)         − (𝑖) 
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𝑄𝑡+1(𝑠𝑡  , 𝑎𝑡) = New State,   𝑄𝑡(𝑠𝑡  , 𝑎𝑡) = Old State, 𝑅𝑡+1 = Reward, 𝛼 =  Learning Rate, 𝛾 = Discount Factor 

Loss Function (Squared Error): The loss represents the error between observation and 

expectation; a differentiable loss function is needed to properly perform the update. For deep Q-

learning, the loss function is typically a simple mean-squared error. The loss function in Q-learning 

provides a measure of the discrepancy between predicted and target Q-values, guiding the learning 

process to optimize the Q-function and improve the agent's decision-making capabilities in an overall 

Deep reinforcement learning setting. 

𝐿 = 𝐸[(𝑟 + 𝛾𝑚𝑎𝑥𝑎`𝑄(𝑠`, 𝑎`) − 𝑄(𝑠, 𝑎))2 ]     − (𝑖𝑖) 

𝑟 + 𝛾𝑚𝑎𝑥𝑎`𝑄(𝑠`, 𝑎`) =  𝑇𝑎𝑟𝑔𝑒𝑡, 𝑄(𝑠, 𝑎))2 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

4.2. Proximal Policy Optimization (PPO): 

PPO is a reinforcement learning approach that diminishes the computational burden corresponding to 

TRPO. PPO combines the restraint into the objective function by penalizing the KL divergence between 

old and new policies, multiplied by a constant C. This allows for uncomplicated optimization utilizing 

stochastic gradient descent. An important contemplation in PPO is the proper selection of the constant 

value C. PPO has demonstrated effectiveness across various tasks, such as robotic manipulation, 

locomotion, and game-playing [17]. 

4.4. Trust Region Policy Optimization (TRPO) 

TRPO is a policy optimization algorithm that aims to maximize the expected reward while staying 

within a trust region of policy changes. It ensures that policy updates are performed conservatively, 

maintaining a close approximation to the previous policy to guarantee monotonic improvements 

[7][15][17]. TRPO is known for its robustness and safety guarantees. 

4.3. Advantage Actor-Critic (A2C) 

A2C (Advantage Actor-Critic) is a reinforcement learning algorithm that integrates policy-based and 

value-based methods. The A2C algorithm utilizes a deep neural network to learn a policy (actor) and 

simultaneously estimate the state value function (critic). A2C aims to enhance learning stability and 

efficiency by combining policy gradients and value functions [15][17][18]. 

4.5. Asynchronous Advantage Actor-Critic (A3C) 

A3C is a parallelized version of the A2C algorithm. It utilizes multiple actor-learner agents that interact 

with multiple instances of the environment in parallel. This parallelization allows for more efficient 

exploration and faster convergence. A3C has been successful in learning policies for complex and 

challenging tasks [17][18]. 

4.6. Deep Deterministic Policy Gradient (DDPG) 

DDPG is a well-known off-policy actor-critic algorithm that is tailored to handle continuous action 

spaces. Its architecture incorporates deterministic policy gradients and utilizes deep neural networks to 

acquire a deterministic policy while estimating the action-value function. To ensure stable learning, 

[17][18] DDPG leverages experience replay and employ target networks, which bear resemblance to 

the mechanism employed in DQN. 

Here are some other examples of deep reinforcement learning algorithms, including Soft Actor-Critic 

(SAC), Proximal Deterministic Policy Optimization (PDPO), and Distributed Distributional 

Deterministic Policy Gradients (D4PG). Each algorithm has its own unique strengths and applications. 

The selection of an algorithm depends on factors such as the problem domain, the characteristics of the 

environment, and the desired balance between exploration, exploitation, stability, and efficiency 

[13][14][15][17][18]. 
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5. CHALLENGES  

Deep reinforcement learning in robotics faces several challenges, including: a) Exploration: 

Exploration is a major challenge in robotic reinforcement learning. Robots need to explore their 

environment to learn optimal policies, but exploration can be time-consuming and potentially unsafe. 

Various techniques, such as utilizing demonstrations or hand-engineered controllers, have been 

proposed to address this challenge. b) Generalization: Generalization is another challenge in deep 

reinforcement learning. While deep neural networks have the ability to generalize from training data, it 

can be difficult for RL policies to generalize to unseen situations. However, the presence of extensive 

and varied data can empower RL policies to generalize akin to supervised models. c) Data Collection: 

Acquiring advanced expertise in robotics necessitates significant data gathering from the robots in order 

to master intricate skills. This process often requires keeping the robots operational with minimal human 

intervention. Ensuring the robots can collect sufficient and diverse data is a challenge in itself. d) 

Sample Efficiency: Deep reinforcement learning algorithms often suffer from sample inefficiency, 

which refers to their requirement for a significant number of interactions with the environment to 

discover optimal policies. This characteristic can pose challenges in real-world robotic applications due 

to the associated costs and time constraints. e) Safety and Risk: Reinforcement learning algorithms 

need to ensure safe behavior during learning and deployment. Preventing unsafe actions and defining 

appropriate reward functions to guide learning are important challenges in robotic reinforcement 

learning. 

Overcoming these challenges necessitates continuous exploration and the creation of innovative 

algorithms and methods to enhance the effectiveness and feasibility of deep reinforcement learning in 

the field of robotics. 

6. CONCLUSION  

In conclusion, deep reinforcement learning has shown great promise in robotics, with successful 

applications in tasks like walking on four legs, picking up unfamiliar objects, and mastering intricate 

movements. However, several challenges still need to be addressed to make deep RL more effective 

and practical for real-world robotic applications. These challenges include exploration, generalization, 

data collection, sample efficiency, safety and risk, and real-world constraints. Future work in this area 

should focus on developing new algorithms and techniques that can address these challenges. For 

example, developing more efficient exploration strategies, improving generalization capabilities, and 

developing methods for safe and efficient data collection could all help to make deep RL more effective 

in robotics. Additionally, developing algorithms that can work within the constraints of real-world 

robotic systems, such as limited computational resources and sensor noise, will be important for 

practical applications. Overall, Deep reinforcement learning can transform robotics by enabling robots 

to learn complex skills and adapt to new environments, but further progress is needed to achieve this 

goal. By addressing the challenges outlined above and continuing to develop new algorithms and 

techniques, we can unlock the full potential of deep RL in robotics and create robots that are more 

capable, adaptable, and intelligent. 
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