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ABSTRACT  

This paper presents an alternative procedure called harmonic analysis to identify frequency of a system through 

critical speed, amplitude and phase angle plots using ANSYS. The unbalance that exists in any rotor due to 

eccentricity has been used as excitation to perform such an analysis. ANSYS parametric design language has 

been implemented to achieve the results. In first case, two un damped isotropic bearings were located at 

positions four and six. In second case, two symmetric orthotropic bearings were located at positions four and 

six, and in third case two identical fluid film bearings were located at positions four and six. The result shows to 

finding a critical speed of rotor using different bearing. The accuracy of the model and the solution technique 

has been demonstrated by comparison with results of previous publications. Very good agreement has been 

obtained. 

KEYWORDS: ANSYS Parametric Design Language, unbalanced response, Critical Speed, frequency, 

undammed isotropic bearings, symmetric orthotropic bearings, fluid film bearings etc. 

I. INTRODUCTION 

Vibration control of turbo machinery is very important for the integrity of industrial plants. In this 

regard it is very important to predict the dynamic behavior of rotating machinery which operates 

above the first critical speed accurately. In fact, rotating motion and critical speeds are design criteria 

of rotating machinery and play an important role in diagnosis and control of rotors. 

Harmonic response analysis is a technique used to determine the steady-state response of a linear 

structure to loads that vary sinusoidally (harmonically) with time and is used to predict the sustained 

dynamic behavior of structures to consistent cyclic loading.  Thus, it can be verified whether or not a 

machine design will successfully overcome resonance, fatigue, and other harmful effects of forced 

vibrations.   

ANSYS  is  a  common  tool  for finite  element  analyses  and  it  is widely used  in  research  and  

development  of rotating machinery. It has rotating beam elements  such as BEAM188, BEAM4 

element  and PIPE16  elements  which  can  be  used  to model  the  shaft.  For  a  rotating  beam 

element,  the  gyroscopic  effect  can  be taken  into  consideration.  Also,  the effects  of  rotary  

inertia,  shear deformation,  axial  load  and  internal damping  can  be  included.  However,  this  

paper  like  most  others doesn’t set  specific  elements  for  modeling rotating disks and bearings . 

This paper shows how COMBIN14, COMBI214 and MATRIX27 element is used to model rotating 

disks and bearings.  The geometry of this arbitrary element is undefined, but its mechanism    can be 
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specified   by stiffness, damping or     mass matrix. Specifications for the elements, descriptions and 

the critical speed calculations of rotor-bearing system are included in this paper. 

The use of flexible supports was strongly developed during last few years due to some practical 

advantages offered by this design. A number of authors [1,6,7,8,10,11,12,17,20,21,22] have addressed 

the problem, highlighted the importance of this component, and triedto use experimental procedures 

and data in order to undertake the influence of the support flexibility of rotor machinery. Effectively, 

the dynamic behavior of rotating machines may be drastically affected by the characteristics of the 

support flexibility of rotor machinery. Then, one of the main objectives of the researchers and 

designers was to be able to obtain fundamental mathematical models, adequate to the observed 

physical phenomena, in order to predict numerically the dynamic behavior of rotor systems and the 

influence of the support flexibility of rotors. In recent year there has been an important research 

activity in the field of modeling and analysis of the dynamic behavior of rotating machinery in order 

to adjust some system parameters and to obtain the most suitable design within the speed range of 

interest. Then, the utilization of finite element models in the area of rotor dynamics was applied to 

develop suitable models and has yielded highly successful results [1, 10]. These numerical models are 

now used to design machinery to operate within acceptable limits. 

Taplak[9] in his paper studied a program named Dynrot was used to make dynamic analysis and the 

evaluation of the results. For this purpose, a gas turbine rotor with certain geometrical and mechanical 

properties was modeled and its dynamic analysis was made by Dynrot program. Gurudatta[4] in his 

paper presented an alternative procedure called harmonic analysis to identify frequency of a system 

through amplitude and phase angle plots. The unbalance that exists in any rotor due to eccentricity has 

been used as excitation to perform such an analysis. ANSYS parametric design language has been 

implemented to achieve the results 

Sinou[16] investigated the response of a rotor’s non- linear dynamics which is supported by roller 

bearings. He studies on a system comprised of a disk with a single shaft, two flexible bearing supports 

and a roller bearing. He found that the reason of the exciter is imbalance. He used a numerical method 

named Harmonic Balance Method for this study. Chouskey[13] et.al studied the influences of internal 

rotor material damping and the fluid film forces (generated as a result of hydrodynamic action in 

journal bearings) on the modal behavior of a flexible rotor-shaft system. It is seen that correct 

estimation of internal friction, in general, and the journal bearing coefficients at the rotor spin-speed 

are essential to accurately predict the rotor dynamic behaviour. This serves as a first step to get an 

idea about dynamic rotor stress and, as a result, a dynamic design of rotors. 

Whalley and Abdul-Ameer[18], calculated the rotor resonance, critical speed and rotational frequency 

of a shaft that its, diameter changes by the length, by using basic harmonic response method. 

Gasch[15], investigated the dynamic behavior of a Laval (Jeffcott) rotor with a transverse crack on its 

elastic shaft, and developed the non-linear motion equations which gave important clues on the crack 

diagnosis. 

Das et al[2]. aimed to develop an active vibration control scheme to control the transverse vibrations 

on the rotor shaft arising from imbalance and they performed an analysis on the vibration control and 

stability of a rotor- shaft system which has electromagnetic exciters. 

Villa et al.,[5] studied the non-linear dynamic analysis of a flexible imbalanced rotor supported by 

roller bearings. They used Harmonic Balance Method for this purpose. Stability of the system was 

analyzed in frequency term with a method based on complexity. They showed that Harmonic Balance 

Method has realized the AFT strategy and harmonic solution very efficiently. Lei and Palazzolo[19] 

have analyzed a flexible rotor system supported by active magnetic bearings and synthesized the 

Campbell diagrams, case forms and eigen values to optimize the rotor-dynamic characteristics and 

obtained the stability at the speed range. They also investigated the rotor critical speed, case forms, 

frequency responses and time responses. 

This paper presents an alternative procedure called harmonic analysis to identify frequency of a 

system through critical speed, amplitude and phase angle plots using ANSYS. The unbalance that 

exists in any rotor due to eccentricity has been used as excitation to perform such an analysis. ANSYS 

parametric design language has been implemented to achieve the results. In first case, two undamped 

isotropic bearings were located at positions four and six. In second case, two symmetric orthotropic 

bearings were located at positions four and six, and in third case two identical fluid film bearings were 

located at positions four and six. 
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II. METHODOLOGY 

A. Model 

The model considered is a Nelson rotor[14] which is a 0.355(m) long overhanging steel shaft of 14 

different cross1sections .The shaft carries a rotor of mass 1.401(kg) and eccentricity 0.635(cm) at 

0.0889(m) from left end and is supported by firstly two bearings at a distance of 0.1651(m) and 

0.287(m) from the left end respectively. Six stations are considered during harmonic analysis as 

shown in Fig.1, where station numbers denote different nodes in the model1(1)Left extreme of shaft, 

(2)Disc, (3)First bearing node, (4) Between the two bearings, (5) Second bearing node and (6)Right 

extreme of shaft.   

A density  of  7806 kg/m3  and elastic modulus  2.078E11 n/m2 were used for  the  distributed  rotor  

and  a concentrated disk with a mass of 1.401  kg , polar  inertia 0.002 kg.m2 and diametral  inertia 

0.00136 kg.m2 was located  at  station  five. The following three cases of bearings were analyzed: 

 a) Undamped isotropic bearings  

 b) Symmetric orthotropic bearings 

 c) Fluid film bearings. 

B. Geometric Modeling and Finite Element Modeling Using APDL   

  In critical speed calculations of rotor-bearing systems, BEAM188, COMBIN14, COMBI214 and 

MATRIX27 elements are adopted.  

1) Beam188 

  The multisection shaft has been modeled in ANSYS using Beam 188  which is a linear/quadratic two 

node beam element in three dimensions with six degrees of freedom at each node:  translations  in  the  

nodal  x, y  and  z directions and rotations about nodal x, y and z axes.   This element facilitates the 

meticulous definition of all the cross1sections of the shaft. The rotor and the its  Real  Constants  

include: AREA, SPIN , ADDMAS.  SPIN  is  an  important  item  in  the critical  speed  calculations,  

which defines  the  rotational  speed  of  the shaft. ADDMAS defines added masses along the shaft. 

The nodes, elements, material properties, real constants, boundary conditions and other physical 

system1defining features that constitute the model have been created by exclusively using APDL 

commands such as ET, MAT, K, N, LSTR, R, RMORE, LATT, LESIZE and E. 

2) Mass21 

The disk of the rotor has been modeled using element MASS21. The its Real Constants  include: IZZ , 

IYY , IXX. 

3) Combin14   

  The undammped isotropic bearing has been modeled in ANSYS using COMBIN14 which has 

longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. The longitudinal spring-damper 

option is a uniaxial tension-compression element with up to three degrees of freedom at each node: 

translations in the nodal x, y, and z directions. No bending or torsion is considered. The torsional 

spring-damper option is a purely rotational element with three degrees of freedom at each node: 

rotations about the nodal x, y, and z axes. 

4) Combi214 

The symmetric orthotropic bearing has been modeled in ANSYS using COMBI214 which has 

longitudinal as well as cross-coupling capability in 2-D applications. It is a tension-compression 

element with up to two degrees of freedom at each node: translations in any two nodal directions (x, 

y, or z). COMBI214 has two nodes plus one optional orientation node. No bending or torsion is 

considered. 

5) Matrix27 

 The fluid film bearing has been modeled in ANSYS using MATRIX27. Its represents  an arbitrary  

element  whose  geometry  is undefined  but  whose  mechanism  can be  specified  by  stiffness  

,damping  , or mass matrix coefficients. The matrix is assumed to relate two nodes, each with six  

degrees  of  freedom  per  node: translations  in  the  nodal  x, y  and  z directions and rotations about 

the nodal x, y and  z  axes.  There  are   three  options   to  use     the  MATRIX27   to define  

coefficients,  which    is    very  useful  to  model  linear  cross  coupling bearing  characteristics  and  

gyroscopic damping matrix for rotating disks.  
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III. SOLUTION AND POST/ PROCESSING 

Once the finite element model has been prepared, harmonic analysis is performed by applying an 

unbalance force at the rotor (assuming an eccentricity of 0.00635(mm)). The system is solved using 

frontal solver to find response of the system in terms of amplitude and phase angle plots. Response is 

determined at 6 stations (1) Left extreme of shaft, (2)Disc, (3)First bearing node, (4) Between the two 

bearings, (5) Second bearing node and (6) Right extreme of shaft. The resulting graphs are exported 

as jpeg files. 

In general, any rotating critical speed is associated with high   vibration amplitude.  When  the  

rotating  speed  is close  to  or  away  from  a  critical  speed, vibration  amplitude  increases  or 

decreases  abruptly  and  phase  becomes unsteady as figure 1  shows. For rotating machinery, rotor 

unbalance mass  is  a  kind  of  synchronous excitation, and induces vibration.  

 

Figure 1: Model of Nelson rotor with various sections, disc and bearings. Numbers in red indicate station 

numbers 

The  Harmonic  Response Analysis module  of  ANSYS  is  applied to  calculate  unbalance  

synchronous  response  of  the  rotor-bearing  system, and a Bode plot can be obtained  .From the 

Bode plot, rotating speeds with peak vibration are defined as critical speeds.                                

IV. RESULTS AND DISCUSSION 

4.1 Case 1: Undamped Isotropic Bearings 

The shaft is supported by two identical undamped isotropic bearings of stiffness Kxx = Kyy = 

4.378E7 N/m. As explained earlier, detailed harmonic analyses have been carried out on the 

considered model to study the unbalance response of the system. The  unbalance  response  for  a  disk 

mass  center  eccentricity  of  0.0635cm at  station  two  was   determined     for    speed       range 

4800-28800 rpm. The    first   critical speed is found around 266 Hz. Fig. 2 through 7 displays the 

variation of amplitude of vibration of the system at the six identified stations respectively. The 

maximum value of amplitude obtained was 0.784223E-7. It can be observed that the amplitude 

reaches a maximum value at one particular excitation frequency. Fig.8 displays the typical variation 

of phase angle with excitation frequency at all the stations. The results are compared to that published 

by Nelson for a first critical speed. Very Good agreement is obtained.  
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Figure 2: Variation of amplitude of vibration (m)(on 

Y axis) at station 1 with excitation frequency (Hz)(on 

X axis 

 
Figure 3: Variation of amplitude of vibration (m)(on 

Y axis) at station 2 with excitation frequency (Hz)(on 

X axis 

 
Figure 4:Variation of amplitude of vibration (m)(on Y 

axis) at station 3 with excitation frequency (Hz)(on X 

axis)  

 
Figure 5:Variation of amplitude of vibration  (m)(on 

Y axis) at station 4 with excitation frequency (Hz)(on 

X axis) 

 
Figure 6:Variation of amplitude of vibration (m)(on Y 

axis) at station 5 with excitation                                         

frequency (Hz)(on X axis)                                                                   

 

 
Figure 7:Variation of amplitude of vibration (m)(on Y 

axis) at station 6 with excitation frequency (Hz)(on X 

axis) 
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Figure 8: Typical variation of phase angle with 

excitation frequency.  

 
Figure 9:Variation of amplitude of vibration (m)(on Y 

axis) at station 1 with excitation                                        

frequency (Hz)(on X axis) 

4.2 Case 2: Symmetric Orthotropic Bearings 

The shaft is supported by two Symmetric Orthotropic Bearings of stiffness components of the 

bearings are  Kxx=Kyy= 3.503E7 N/m and Kxy=Kyx = -8.756E6 N/m. The  unbalance  response  for  

a  disk mass  center  eccentricity  of  0.0635cm at  station  two  was   determined for speed range 

4800-28800 rpm. The first   critical  speed  is  found around 240 Hz. Fig. 9 through 14 display the 

variation of amplitude of vibration of the system at the six identified stations respectively. The 

maximum value of amplitude obtained was 0.50077E-7. It can be observed that the amplitude reaches 

a maximum value at one particular excitation frequency. Fig. 15 displays the typical variation of 

phase angle with excitation frequency at all the stations. The numerical results of the first critical 

speeds are well compared to those published by Nelson. In this case also very good agreement is 

obtained. 

 
Figure 10:Variation of amplitude ofvibration (m)(on Y 

axis) at station 2 with excitation frequency (Hz)(on X 

axis) 

 
Figure 11:Variation of amplitude of vibration (m)(on 

Y axis) at station 3 with excitation                                          

frequency (Hz)(on X axis) 
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Figure 12:Variation of amplitude of vibration (m)(on 

Y axis) at station 4 with excitation frequency (Hz)(on 

X axis) 

 
Figure 13:Variation of amplitude of vibration (m)(on 

Y axis) at station 5 with excitation frequency (Hz)(on 

X axis)                                                              

 

 
Figure 14:Variation of amplitude of vibration (m)(on 

Y axis) at station 6 with excitation frequency (Hz)(on 

X axis) 

 

 
Figure 15: Typical variation of phase angle with 

excitation Frequency. 

 

4.3 Case 3: Fluid film bearings 

The shaft is supported by two fluid film bearings of stiffness component the bearings are Kxx = Kyy 

= 4.378E7 N/m. while damping components are Czz=Cyy=1752(Ns/m). The  unbalance  response  for  

a  disk mass  center  eccentricity  of  0.0635cm at  station  two  was   determined for speed range 

4800-28800 rpm. We therefore present the results that correspond to 268.9Hz, which is the first 

critical speed of the system as calculated by B. Gurudatt, and Vikram Krishna [3]. Fig. 16 through 21 

display the variation of amplitude of vibration of the system at the six identified stations respectively. 

The maximum value of amplitude obtained was 0.5572E-7. It can be observed that the amplitude 

reaches a maximum value at one particular excitation frequency. Fig. 22 displays the typical variation 

of phase angle with excitation frequency at all the stations.  

Using the above three bearings harmonic analysis were performed and finding the different critical 

speed for different bearings. Similarly the variation of amplitude response with frequency is also 

obtained.  
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Figure 16:Variation of amplitude of vibration (m) (on 

Y axis) at station 1 with excitation                                    

frequency (Hz)(on X axis)                                                              

 

 
Figure 17:Variation of amplitude of vibration (m)(on 

Y axis) at station 2 with excitation frequency (Hz)(on 

X axis) 

 
Figure 18:Variation of amplitude of vibration (m)(on 

Y axis) at station 3 with excitation                                    

frequency (Hz)(on X axis) 

 
Figure 19:Variation of amplitude of vibration (m)(on 

Y axis) at station 4 with excitation frequency (Hz)(on 

X axis) 

 
Figure 20:Variation of amplitude of vibration (m)(on 

Y axis) at station 5 with excitation                                    

frequency (Hz)(on X axis)                                                              

 
Figure 21:Variation of amplitude of vibration (m)(on 

Y axis) at station 6 with excitation frequency (Hz)(on 

X axis) 
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Figure 22: Typical variation of phase angle with 

excitation frequency 

 

Table I shows the comparison of three bearings used in this study. The excitation frequency is 

corresponding to the maximum amplitude of rotor. The excitation frequency of the rotor is found for 

different critical speeds. It is seen that, combin14 and Matrix27 bearings gives the more critical speed 

than the combi214 bearing. 

Table 1. Comparison of different bearings 

Bearings Max. Amplitude Excitation frequency 

Undamped isotropic 

bearings (COMBIN14) 

0.78423E-7 266.2 

Symmetric orthotropic 

bearings(COMBI214) 

0.50077E-7 240 

Fluid film bearings. 

(MATRIX27) 

0.5572E-7 267 

V. CONCLUSION 

A finite element model of multi-bearing   rotor system using ANSYS is presented in this paper. The 

effects of rotary inertia, and internal damping were included in the analysis. Comparison of three 

bearings included in the study, shows combin14 and Matrix27 bearings gives the more critical speed 

than the combi214 bearing. Study also obtained the variation of amplitude response with frequency as 

it is important for minimizing the noise of the rotor. The increasing amplitude increases the noise of 

the rotor. This analysis gives the alternate procedure of finding the critical speed that is harmonic 

analysis. 

Table.2 Geometric Data of Rotor-Bearing Element 

Element 

Node No 

Node 

Location 

(cm) 

Bearing and 

Disk 

Inner 

Diameter 

(cm) 

Outer 

Diameter 

(cm) 

1 0.0  0.0 0.51 

2 1.27  0.0 1.02 

3 5.08  0.0 0.76 

4 7.62  0.0 2.03 

5 8.89 Disk 0.0 2.03 

6 10.16  0.0 3.30 

7 10.67  1.52 3.30 

8 11.43  1.78 2.54 

9 12.70  0.0 2.54 

10 13.46  0.0 1.27 

11 16.51 Bearing 0.0 1.27 

12 19.05  0.0 1.52 

13 22.86  0.0 1.52 

14 26.67  0.0 1.27 
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15 28.70 Bearing 0.0 1.27 

16 30.48  0.0 3.81 

17 31.50  0.0 2.03 

18 34.54  1.52 2.03 
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